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Abstract
In recent studies of Alzheimer’s disease (AD), it has increasing attentions in identifying mild
cognitive impairment (MCI) converters (MCI-C) from MCI non-converters (MCI-NC). Note that
MCI is a prodromal stage of AD, with possibility to convert to AD. Most traditional methods for
MCI conversion prediction learn information only from MCI subjects (including MCI-C and MCI-
NC), not from other related subjects, e.g., AD and normal controls (NC), which can actually aid
the classification between MCI-C and MCI-NC. In this paper, we propose a novel domain-transfer
learning method for MCI conversion prediction. Different from most existing methods, we
classify MCI-C and MCI-NC with aid from the domain knowledge learned with AD and NC
subjects as auxiliary domain to further improve the classification performance. Our method
contains two key components: (1) the cross-domain kernel learning for transferring auxiliary
domain knowledge, and (2) the adapted support vector machine (SVM) decision function
construction for cross-domain and auxiliary domain knowledge fusion. Experimental results on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database show that the proposed method
can significantly improve the classification performance between MCI-C and MCI-NC, with aid
of domain knowledge learned from AD and NC subjects.

1 Introduction
Alzheimer’s disease (AD) is the most common form of dementia in elderly people
worldwide. Early diagnosis of AD is very important for possible delay of the disease. Mild
cognitive impairment (MCI) is a prodromal stage of AD, which can be further categorized
into MCI converters (MCI-C) and MCI non-converters (MCI-NC). The former will convert
into AD in follow-up time, while the latter will not convert. Thus, accurate diagnosis of MCI
converters is of great importance. Nowadays, many machine learning methods have been
proposed for the classification of AD or MCI [1–3]. More recently, an increasing number of
studies in AD research begin to address MCI conversion prediction, i.e., the classification
between MCI-C and MCI-NC based on the baseline imaging data [2–7].

One challenge in MCI conversion prediction is that the number of MCI (including both
MCI-C and MCI-NC) subjects available for training is generally very small and thus the
generalization ability of the classifier is limited. The same problem also exists in the
classification between AD and NC, where the number of AD and NC subjects are also
limited. Recently, to enhance the classification between AD and NC, several studies have
used semi-supervised learning (SSL) methods [8] in AD diagnosis, where MCI subjects are
treated as unlabeled data to aid AD classification [9–11]. Semi-supervised learning methods
can efficiently utilize unlabeled samples to improve classification and regression
performance, but it requires unlabeled samples and labeled samples coming from the same
data distribution [8], which is usually not satisfied in practice. For example, Fig. 1 plots the
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distributions of AD, MCI-C, MCI-NC and NC from ADNI. As can be seen from Fig. 1, the
distribution of MCI is different from that of AD and NC.

On the other hand, in the machine learning areas, a new learning methodology called
transfer learning has been developed for dealing with problems involving cross-domain
learning. Unlike SSL, transfer learning does not assume the auxiliary data (unlabeled data in
SSL) have the same distribution as target data (labeled data in SSL), and can effectively
adopt those auxiliary data from the related domain for improving classification performance,
as validated in several successful applications in computer vision [12–13]. However, to the
best of our knowledge, transfer learning has not been used for addressing brain disease
classification problems in medical imaging, although intuitively the inclusion of additional
AD and NC subjects as auxiliary data may be beneficial for the classification between MCI-
C and MCI-NC. For example, as we can see from Fig. 1, although the distributions of MCI-
C and MCI-NC are different from those of AD and NC, they are very related and the domain
knowledge for diagnosing AD and NC may help diagnose MCI conversion.

In this paper, we propose a new transfer learning method called Domain Transfer Support
Vector Machines (DTSVMs) to classify MCI-C and MCI-NC, with the aid from auxiliary
AD and NC subjects. Specifically, we first construct a cross-domain kernel to transfer
auxiliary domain knowledge, and then we utilize the adapted SVM to fuse cross-domain and
auxiliary domain knowledge for better helping MCI-C and MCI-NC classification. We
validate our method on single-modality and multi-modality biomarkers, including magnetic
resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET),
and quantification of specific proteins measured through cerebrospinal fluid (CSF), from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

2 Domain Transfer Support Vector Machines (DTSVMs)
Transfer learning aims to apply knowledge learned from one or more related auxiliary
domain to improve the performance on the target domain. In this section, we propose a new
method called DTSVM for MCI-C and MCI-NC classification. There are two main steps in
DTSVM, i.e., cross-domain kernel learning for transferring auxiliary domain knowledge,
and the adapted SVM decision function construction for cross-domain and auxiliary domain
knowledge fusion. Fig. 2 shows the flow chart of our proposed DTSVM classification
method.

2.1 Cross-Domain Kernel for Transferring Knowledge of the Auxiliary Domain
Because of distribution difference between the auxiliary and the target domains, training
with samples from the auxiliary domain may degrade the classification performance in
another target domain. So, we cannot directly add auxiliary data to target domains for
training. In cross-domain learning, it is crucial to reduce the difference between data
distributions of the auxiliary and target domains. To avoid such differences, we use cross-
domain kernel learning for transferring auxiliary domain knowledge [13]. Briefly, the
auxiliary and target domains are first mapped to the Reproducing Kernel Hilbert Space
(RKHS), and then the cross-domain kernel approach is used to build a new kernel function
that can reduce the difference between data distributions of the auxiliary and target domains.

In the following, we formally address the problem of the cross-domain kernel approach by
building a new kernel function. Firstly, we define the kernel matrices from the auxiliary

domain A and from the target domain T as:  and

, respectively, where  and  are samples in the auxiliary domain
A, and nA is the number of samples in domain A. Then, we define the cross-domain kernel
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matrices from the auxiliary domain to the target domain and from the target domain to the

auxiliary domain as:  and , respectively,

where  and  are samples in the target domain T, and nT is the number of samples in
domain T. Finally, the kernel matrix K = k(xi, xj) is obtained as:

(1)

Where n = nT + nA.

2.2 Adapted SVM for Knowledge Fusion
Assume we have nA samples and corresponding class labels in the auxiliary domain as

, where xi A ∈ Rd is a sample and  is the class label (i.e., AD as 1 and

NC as −1). Also, assume we have nT samples and corresponding class labels as ,

where  is a sample and  is the class label (i.e., MCI-C as 1 and MCI-NC
as −1). For the convenience of description in the following, we can also define

. According to Section 2.1, we can learn the cross-
domain kernel K from both auxiliary and target domains. In addition, since AD and NC
subjects are sitting in the auxiliary domain while MCI-C and MCI-NC subjects are sitting in
the target domain, we can assign the cross-domain label so that the MCI-NC label will be
the same as the NC label and the MCI-C label will be the same as the AD label, considering
that the learning tasks for the MCI-C vs. MCI-NC classification and the AD vs. NC
classification are very related [9]. Here, we adopt the adapted SVM method in [12] to learn
the cross-domain classifier f(x), which is the ultimate decision function of our adapted SVM
method. This ultimate decision function f(x) is first learned from the cross-domain classifier
w′ ϕ(x) as:

(2)

Where ϕ(x) is a kernel-induced nonlinear implicit mapping, w is the parameter vector of the
classifier, b is the bias term, and x is the cross-domain data obtained by x = xA ∪ xT. Also, w
′ denotes the transpose of w.

Because the ultimate decision function f(x) can also be learned from the auxiliary domain
classifier fA(xA), Eq. 2 can thus be written as:

(3)

To learn the weight vector w in Eq. 3, we use the following objective function, similar to the
SVM:

(4)
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Where l is the l-th sample in the cross-domain y = yA ∪ yT with range of 1 ≤ l ≤ n, ζl is the
corresponding slack variable, and nT+ nA represents the total number of samples in y as
indicated above.

According to [12], we can solve this objective function (in Eq. 4) to obtain the solution for
the weight vector w. Then, we can obtain the final solution for f(x).

3 Experiments
In this section, we evaluate the effectiveness of our proposed DTSVM method on
multimodal data, including MRI, PET and CSF, from the Alzheimer’s disease
Neuroimaging Initiative (ADNI) database.

3.1 Experimental Settings
In our experiments, the baseline ADNI subjects with all corresponding MRI, PET, and CSF
data are included, which leads to a total of 202 subjects (including 51 AD patients, 99 MCI
patients, and 52 normal controls (NC)). For 99 MCI patients, it includes 43 MCI converters
and 56 MCI non-converters. We use 51 AD and 52 NC subjects as auxiliary domains, and
99 MCI subjects as target domains.

The same image pre-processing as used in [1] is adopted here. First, for all structural MR
images, we correct their intensity inhomogeneity by the N3 algorithm, perform skull-
stripping, and remove the cerebellum. Then, we use the FSL package to segment each
structural MR image into three different tissue types: gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF). We further use an atlas warping algorithm [14] to partition
each structural MR brain image into 93 ROIs. For each of the 93 ROIs, we compute GM
volume in that ROI as a feature; For PET image, we use a rigid transformation to align it to
its corresponding structural MR image of the same subject, and then compute the average
PET value of each ROI as a feature. Accordingly, for each subject, we can acquire 93
features from the structural MR image, another 93 features from the PET image, and 3
features (Aβ42, t-tau, and p-tau) from the CSF biomarkers.

To evaluate the performance of different classification methods, we use a 10-fold cross-
validation strategy to compute the classification AUC (areas under the ROC curve),
accuracy, sensitivity and specificity. Specifically, the whole set of subject samples are
equally partitioned into 10 subsets, and then one subset is successively selected as the testing
samples and all remaining subsets are used for training classifiers. This process is repeated
10 times. The SVM classifier training of standard SVM and DTSVM are implemented using
LIBSVM toolbox [15], with a linear kernel and a default value for the parameter C (i.e.,
C=1). For comparison, LapSVM is also adopted in this paper. LapSVM is a typical semi-
supervised learning method based on manifold hypothesis [8]. For LapSVM settings, we use
linear kernel, and the graph Laplacian L with nT+ nA nodes are connected using k (i.e., k=5)
nearest neighbors, and their edge weights are calculated using the Euclidean distance among
samples. We use both multi-modality and single-modality biomarkers to validate our
method. For combining multimodality data in DTSVM, standard SVM, and LapSVM
methods, we specifically use a linear multi-kernel combination technique, with the weights
learned from the training samples through a grid search, using the range from 0 to 1 at a step
size of 0.1. Also, for features of each modality, the same feature normalization scheme as
used in [1] is adopted here.

3.2 Results
We compare DTSVM with LapSVM and standard SVM (i.e., SVM) for both multi-modality
and single-modality cases. Table 1 shows the classification performance measures of
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DTSVM, LapSVM, and SVM on different modalities. Note that Table 1 shows the averaged
results of 10 independent experiments. As we can see from Table 1, DTSVM can
consistently achieve better results than LapSVM and SVM methods on each performance
measure, which validates the efficacy of our DTSVM method on using AD and NC subjects
as auxiliary domains for helping classification. Specifically, for multi-modality case,
DTSVM can achieve a classification accuracy of 69.4%, which is significantly better than
LapSVM and SVM that achieve only 60.8% and 63.8%, respectively. In addition, for multi-
modality case, if using the leave-one-out evaluation strategy, DTSVM can achieve a
classification accuracy of 70.7%.

On the other hand, AUC and ROC are further used to validate the classification performance
of DTSVM, LapSVM, and SVM. Table 1 also gives the AUC values of the three methods,
and Fig. 3 plots their ROC curves with respect to different modalities. Both Table 1 and Fig.
3 indicate that DTSVM is superior to LapSVM and SVM for MCI-C and MCI-NC
classification. Specifically, in the multi-modality case, the AUC value is 0.736 for DTSVM,
while the AUC values for LapSVM and SVM are only 0.626 and 0.683, respectively.

Finally, in Fig. 4, we compare DTSVM with LapSVM for classification accuracy, with
respect to the use of different number of subjects in the auxiliary domain. As we can see
from Fig. 4, in most cases, the performance of DTSVM is significantly better than LapSVM
as the number of subjects in the auxiliary domain increases. This validates the usefulness of
adopting domain transfer learning method (i.e. DTSVM) to learn AD and NC domain
knowledge, compared to the semi-supervised learning method (i.e., LapSVM). This result
further demonstrates that the distribution of MCI is different from that of AD and NC.

4 Conclusion
This paper addresses the problem of exploiting the use of auxiliary domain data (AD and
NC subjects) for helping MCI-C vs. MCI-NC classification. By integrating the cross-domain
kernel learning and the adapted SVM methods, we propose a Domain Transfer SVM
classification method, namely DTSVM. Our method does not require the auxiliary domain
data and the target domain data to be from the same distribution. Experimental results on
ADNI dataset validate the efficacy of our proposed method.

Acknowledgments
This work was partially supported by NIH grants (EB006733, EB008374, EB009634, AG041721 and MH088520),
NSFC grant (60875030), and CQKJ (KJ121111).

References
1. Zhang D, Wang Y, Zhou L, Yuan H, Shen D. Multimodal classification of Alzheimer’s disease and

mild cognitive impairment. NeuroImage. 2011; 55(3):856–867. [PubMed: 21236349]

2. Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD
conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging. 2011;
32:2322.e19–2322.e27. [PubMed: 20594615]

3. Cho Y, Seong JK, Jeong Y, Shin SY. Individual subject classification for Alzheimer’s disease based
on incremental learning using a spatial frequency representation of cortical thickness data.
NeuroImage. 2012; 59:2217–2230. [PubMed: 22008371]

4. Aksu Y, Miller DJ, Kesidis G, Bigler DC, Yang QX. An MRI-derived definition of MCI-to-AD
conversion for long-term, automatic prognosis of MCI patients. PLoS One. 2011; 6:e25074.
[PubMed: 22022375]

Cheng et al. Page 5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2013 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients,
and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage. 2009;
44:1415–1422. [PubMed: 19027862]

6. Leung KK, Shen KK, Barnes J, Ridgway GR, Clarkson MJ, Fripp J, Salvado O, Meriaudeau F, Fox
NC, Bourgeat P, Ourselin S. Increasing power to predict mild cognitive impairment conversion to
Alzheimer’s disease using hippocampal atrophy rate and statistical shape models. Med Image
Comput Comput Assist Interv. 2010; 13:125–132. [PubMed: 20879307]

7. Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC. Baseline MRI predictors of
conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res. 2009; 6:347–361.
[PubMed: 19689234]

8. Belkin M, Niyogi P, Sindhwani V. Manifold Regularization: A Geometric Framework for Learning
from Labeled and Unlabeled Examples. Journal of Machine Learning Research. 2006; 7:2399–
2434.

9. Filipovych R, Davatzikos C. Semi-supervised pattern classification of medical images: Application
to mild cognitive impairment (MCI). NeuroImage. 2011; 55(3):1109–1119. [PubMed: 21195776]

10. Filipovych R, Resnick SM, Davatzikos C. Semi-supervised cluster analysis of imaging data.
NeuroImage. 2011; 54(3):2185–2197. [PubMed: 20933091]

11. Zhang D, Shen D. Semi-supervised multimodal classification of Alzheimer’s disease. IEEE
International Symposium on Biomedical Imaging. 2011:1628–1631.

12. Yang, J.; Yan, R.; Hauptmann, AG. Cross-Domain Video Concept Detection Using Adaptive
SVMs. ACM Multimedia; 2007.

13. Duan L, Xu D, Tsang I, Luo J. Visual Event Recognition in Videos by Learning from Web Data.
IEEE Int’l Conf Computer Vision and Pattern Recognition. 2010:1959–1966.

14. Shen D, Davatzikos C. HAMMER: Hierarchical attribute matching mechanism for elastic
registration. IEEE Transactions on Medical Imaging. 2002; 21:1421–1439. [PubMed: 12575879]

15. Chang CC, Lin CJ. LIBSVM: a library for support vector machines. 2001

Cheng et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2013 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Distributions of AD, NC, MCI-C, and MCI-NC subjects with CSF features
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Fig. 2.
Flow chart of the proposed DTSVM classification method
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Fig. 3.
ROC curves of DTSVM, LapSVM, and SVM, using multi-modality and single-modality
data, respectively
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Fig. 4.
Comparison of classification accuracy of DTSVM and LapSVM with respect to the use of
different number of subjects in the auxiliary domain
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